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SUMMARY

A comparison of multigrid methods for solving the incompressible Navier–Stokes equations in three
dimensions is presented. The continuous equations are discretised on staggered grids using a second-order
monotonic scheme for the convective terms and implemented in defect correction form. The convergence
characteristics of a decoupled method (SIMPLE) are compared with those of the cellwise coupled method
(SCGS). The convergence rates obtained for computations of the three-dimensional lid-driven cavity
problem are found to be very similar to those obtained for computations of the corresponding
two-dimensional problem with comparable grid density. Although the convergence rate of SCGS is thus
superior to that of SIMPLE, the decoupled method is found to be more efficient computationally and
requires less computing time for a given level of convergence. The linewise implementation of the coupled
method (CLGS) is also investigated and shown to be more efficient than SCGS, although the
convergence rate and computing time required per cycle are both found to depend on the direction of
sweep. The optimal implementation of CLGS is found to be only marginally more effective than
SIMPLE, but a change to the structure of the data storage would increase the advantage. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years the application of multigrid methods to the incompressible Navier–Stokes
equations has been a subject of great research interest. The achievement of convergence rates
that are independent of grid size has enabled researchers to take advantage of the advances in
computer technology and generate solutions to complex flow problems on desktop worksta-
tions in computing times that are affordable. The most popular methods are those based on a
discretisation of the primitive variables and an associated solver (smoother), with a multigrid
algorithm used to accelerate the convergence of the solution process. The multigrid algorithm
is essentially a nested procedure for transferring information between grids in a hierarchical
structure and consists of appropriate coarse-to-fine and fine-to-coarse operators. Given the
discrete equations and the transfer operators, the heart of the process is the solver, and two
general types have been developed. Decoupled algorithms such as the semi-implicit method for
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pressure-linked equations (SIMPLE) [1] historically predate coupled algorithms such as the
symmetric coupled Gauss–Seidel (SCGS) method [2] and are quite opposite in their philoso-
phy. The former solves each momentum equation over the entire domain in turn, and converts
the continuity equation into a Poisson equation to achieve local coupling between the velocities
and the pressure, while the latter solves a locally coupled set of all the equations together and
achieves global coupling by sweeping over the domain. Each can be used as a smoother in a
multigrid algorithm and both are in widespread use—see [3–5] for the decoupled method and
[6–8] for the coupled method.

A limited number of comparisons have been made of the relative effectiveness of decoupled
and coupled smoothers for the two-dimensional driven cavity. References [9,10] concluded that
SCGS outperforms SIMPLE and while the same conclusion was drawn in [11], the results
suggested that for a more complicated discretisation scheme than the hybrid scheme, the
difference between the two is less pronounced. Both methods have been extended to deal with
flows in three dimensions—see [12–14] for the coupled strategy and [15] for the decoupled, but
it would appear that no corresponding comparison for the three-dimensional driven cavity
problem has been made. No comparison is attempted in [12] or [15], while both [13] and [14]
make the somewhat one-sided comparison of the coupled approach with multigrid against the
decoupled approach without. It would appear also that no comparison of the smoothing rates
obtained for these three-dimensional computations compared with those obtained for two
dimensions has been carried out.

The usual discretisation techniques in all these computations are based either on staggered
or collocated grids—both of which present their own complexity. The use of staggered grids
complicates the geometry so that several types of control volumes must be taken into account,
but the discretisation is relatively straightforward, while the use of collocated grids simplifies
the geometry but complicates the discretisation. Decoupled methods have been applied to
multigrid implementations in two and three dimensions on both staggered [3–5,9–11] and
collocated grids [15–17]. The implementation of coupled methods, on the other hand, is only
natural for staggered grids—there is no corresponding formulation for the collocated case.
The trend away from staggered grids to collocated grids has thus meant a renewal of interest
in decoupled methods.

Early attempts at discretising the convective terms relied heavily on the hybrid scheme,
which switches from second-order central differencing to first-order upwinding when the grid
Peclet number rises to 2 or more. Better discretisations are readily available that consist of the
first-order upwind contribution and a second-order contribution specially constructed to
enhance the accuracy but retain monotonicity. These are implemented in the form of a
deferred correction and have a demonstrable effect in reducing the number of grid points
required for a given level of resolution.

The original coupled method SCGS just solves for corrections to a pressure and the six
adjacent staggered velocities (four in two dimensions), by inverting a locally coupled set of
seven equations (five in two dimensions) based around a typical continuity control volume.
This cellwise procedure is known to be ineffective when grid lines are stretched or the flow is
largely unidirectional and a modification is required. It can be shown that coupling together
all continuity control volumes in a row or line and solving the resulting block tridiagonal
matrix to update all variables simultaneously considerably enhances the convergence character-
istics under these circumstances. This approach is known as the collective line Gauss–Seidel
(CLGS) [18]. It was shown in [11] that the convergence rate of such a linewise approach may
deteriorate slightly for recirculating flow in a cavity compared with the cellwise approach, but
on the other hand is more efficient in terms of the numbers of flux evaluations required and
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leads to a reduction in computing time per cycle. It was also shown that this approach had
better convergence characteristics than the symmetric coupled alternating line (SCAL)
method [19], especially for unidirectional flows. The three-dimensional equivalent of solving
in lines in two dimensions is solving in planes. However, rather than develop a genuine
planewise method where all variables in a plane are updated simultaneously, the three-di-
mensional line solver described in this paper merely sweeps in lines over the two other
co-ordinate directions. This raises questions concerning the choice of the sweeping direction
for optimal smoothing and empirical results in [11] for flows that are largely unidirectional
suggested that sweeping in a direction perpendicular to the main flow was superior to
sweeping parallel to the flow. Sweeping in all three co-ordinate directions is tested here to
determine which if any is preferred.

Thus, the purposes of this paper are three-fold. The first is the comparison of the
SIMPLE and SCGS methods as multigrid smoothers in terms of convergence rates and
computing times required for a given level of convergence. The second is to compare the
convergence rates obtained for the three-dimensional problem with those obtained for the
two-dimensional case, while the third is to compare the performance of SIMPLE and
SCGS approaches with the linewise approach CLGS. The paper continues with a descrip-
tion of the mathematical problem and the discretisation, after which the smoothers are
described in more detail and the multigrid implemetation is given. Discussion of the results
follows and the paper ends with some general conclusions.

2. THE CONTINUOUS PROBLEM

The equations of motion for steady laminar viscous flow in conservation form are

(

(xj

�
ruj8−G

(8

(xj

n
=S8, (1)

where 8=ui, G=m and S8 is a source term containing the pressure gradient, and

(

(xj

[ruj ]=0. (2)

Equation (1) represents conservation of momentum in each of the three co-ordinate
directions, while (2) represents the continuity constraint. The geometry under consideration
is that of a unit cubic cavity with boundary conditions consistent with an upper lid moving
with unit velocity and all other faces static. Although this is a standard test case, it is not
without its difficulties, since three-dimensional cavity flows reach transition at relatively
low Reynolds numbers. Several steady state computations have been reported in the
literature for Re=1000, including [12–16], although analysis [20] suggests that unstable
spanwise modes may occur at Reynolds numbers below this value. For simplicity, how-
ever, here it is assumed that a steady flow exists at Reynolds numbers up to and includ-
ing 1000, and that it is symmetric about y=0.5. Neumann conditions are imposed on
this plane and the solution actually only computed in half the domain, as illustrated in
Figure 1.
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Figure 1. Geometry of unit cube showing the symmetry plane and direction of motion of upper boundary.

3. THE DISCRETE PROBLEM

The discretisation scheme used has been described in [5,11] and follows many of the standard
practices of the finite volume method. The momentum equations (1) are integrated over a
typical control volumes of volume DV and the divergence theorem used to give the usual
discrete boundary integral
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(8
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�

DAyz+
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�

w8−G
(8

(z
�

DAxy
n

=S8DV, (3)

where 8 denotes u, 6 or w and the summation is taken over the six faces of the control volume.
Here DAyz denotes the area of the cell face in the y–z plane etc. Staggered grids are used with
the usual arrangement of variables and associated control volumes, Figure 2. Local interpola-
tion is used for u, 6 and w and the diffusive terms are obtained by standard two-point
differencing. The advective terms are approximated by a monotonic scheme derived by
considering the flow across cell boundaries to be one-dimensional in directions normal to the
cell faces. The value of the flow variable at the centre of the cell under consideration is denoted
8p, with 8u and 8d denoting the corresponding values at the centres of the cells immediately
upwind and downwind respectively. The estimate on the downwind cell face, 8f, midway
between 8p and 8d is given by the harmonic mean [21,22] of the values arising from averaging
neighbouring values (central differencing) and second-order upwind interpolation, i.e.

Figure 2. Staggered grid arrangement of flow variables and continuity control volume.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 441–459 (1999)



INCOMPRESSIBLE NAVIER–STOKES EQUATIONS 445

8f=
1
2

(8p+8d)8̂p+
1
2

(38p−8u)(1−8̂p),

where 8̂p is the ratio of differences

8̂p=
8p−8u

8d−8u

.

The estimate is actually implemented as

8f=8p+ (8d−8p)8̂p,

from which the monotonicity property easily follows, since 8p58f58d is clearly satisfied if
058̂p51. The estimate thus consists of the value immediately upstream (‘first-order upwind-
ing’) plus a second-order correction. Values of 8̂p outside the range 058̂p51 correspond to
extreme points in the flow, and only the value immediately upstream is used.

The convective and diffusive contributions from the six cell faces are collected in this manner
so that (3) can be expressed in the form

ap8p=% am8m+Sp
8. (4)

The summation is taken over the centres of the six neighbouring cells, and the multiplying
coefficients contain the convective and diffusive flow rates. The source term includes the
second-order corrections from the convective scheme and the pressure gradient term discretised
using two-point differencing in the usual way.

A sequence of grids is defined where the maximum number of lines on grid Ng (Ng=1
corresponds to the finest grid) in the x-, y- and z-directions are IMAXN g

, JMAXN g
and

KMAXN g
respectively. To avoid wasteful use of storage space, single-dimensional arrays are

used to store all variables in rows in the x-direction, so that consecutive elements contain
horizontal neighbours in general. A pointer system is used to address the elements at position
(I, J, K) on grid Ng of the form

M=I+ (J−1)×IMAXN g
+ (K−1)×IMAXN g

×JMAXN g
+NGN g

,

where NGN g
is a summation term over the grids defined by

NG1=0, NGN g
=NGN g−1+IMAXN g−1×JMAXN g−1×KMAXN g−1, Ng\1.

Although all the results described later were obtained on uniform Cartesian grids, the code
retains the capacity for computation on non-uniform Cartesian grids.

4. SMOOTHING ALGORITHMS

With reference to a typical continuity control volume, Figure 2, it is supposed that the exact
discrete values u, w and p satisfy the discrete steady momentum equations

ai−1/2jk
u ui−1/2jk=% am

u um+Ai−1/2jk
u (pi−1jk−pijk)+Si−1/2jk

u , (5)

ai+1/2jk
u ui+1/2jk=% am

u um+Ai+1/2jk
u (pijk−pi+1jk)+Si+1/2k

6 , (6)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 441–459 (1999)



M.F. PAISLEY446

aij−1/2k
6 6ij−1/2k=% am

6 6m+Aij−1/2k
6 (pij−1k−pijk)+Sij−1/2k

6 , (7)

aij+1/2k
6 6ij+1/2k=% am

6 6m+Aij+1/2k
6 (pijk−pij+1k)+Sij+1/2k

6 , (8)

aijk−1/2
w wijk−1/2=% am

w wm+Aijk−1/2
w (pijk−1−pijk)+Sijk−1/2

w , (9)

aijk+1/2
w wijk+1/2=% am

w wm+Aijk+1/2
w (pijk−pijk+1)+Sijk+1/2

w , (10)

where Ai−1/2jk
u =DAi−1/2jk

u /Dxi−1/2jk
u , etc, and the source terms have been multiplied by the

volumes of respective control volumes. The discrete continuity equation is

(ui+1/2jk−ui−1/2jk)DAijk
x + (6ij+1/2k−6ij−1/2k)DAijk

y + (wijk+1/2−wijk−1/2)DAijk
z =0. (11)

4.1. Decoupled smoother (SIMPLE)

The SIMPLE pressure correction algorithm [1] has been discussed many times and only a
brief resume is given here. Expression (4) comprises a diagonally dominant set of equations
over the entire domain for each of the variables u, 6 and w. Using an estimated pressure field
the coefficients in the discrete momentum equations (5)–(10) are calculated and the equations
solved globally in turn via an ADI sweep to yield updates to the current velocity field. The rest
of the iteration provides coupling between the local velocities and pressures and uses relations
between corrections to velocities and adjacent pressure values (see Figure 2) derived from the
discrete momentum equations:

u %i−1/2jk=
Ai−1/2jk

u

a i−1/2jk
u (p %i− ljk−p %ijk), 6%ij−1/2k=

Aij−1/2k
6

aij−1/2k
u (p %ij− lk−p %ijk),

w %ijk−1/2=
Aijk−1/2

w

aijk−1/2
w (p %ijk− l−p %ijk). (12)

These are substituted into the discrete continuity equation written terms of velocity corrections

(u %i+1/2jk−u %i−1/2jk)DAijk
x + (6%ij+1/2k−6%ij−1/2k)DAijk

y + (w %ijk+1/2−w %ijk−1/2)DAijk
z = −Rijk

c ,
(13)

where Rijk
c is the residual of the continuity equation for the current velocity field, to derive a

Poisson-type equation for the pressure corrections:

Aijkp %ijk−% Amp %m= −Rijk
c . (14)

Equation (14) is solved using four ADI sweeps to yield the pressure corrections, which are used
to update the velocities through relationships (12). Underrelaxation is required for a conver-
gent iteration, with a typical value for the momentum equations being 0.7. The pressure
correction equation itself is not underrelaxed, but only a fraction of the resulting pressure
corrections is added to the current pressure field, the value of which is typically 0.3.

4.2. Coupled smoother—cellwise (SCGS)

Vanka’s SCGS method [2,12] is based on solving equations derived from (5)–(11) for the
corrections to the values of the six velocities and one pressure associated with a typical
continuity control volume. The seven equations are written as the bordered matrix system:
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The matrix is inverted analytically to yield the required updates which are immediately added
to the values of the current solution. Underrelaxation is implemented by adding a fraction of
the changes calculated to the respective field variables—typical values for the fraction being in
the range 0.7–0.9 for the velocities and 0.8–1.0 for the pressure. The philosophy of the SCGS
method is entirely opposite to that of the SIMPLE method in that for SCGS, immediate local
linkage is provided between variables and the global coupling is achieved by sweeping through
the domain in a prescribed manner, such as forward lexicographic ordering followed by
backward. Continuity control volumes are visited in turn and all the coefficients of the
transport equations are recalculated to take account of the updated values of flow variables.
As discussed in [11], the bulk of the work is in assembling the equation coefficients needed to
calculate the current value of the residuals, and this outweighs the overhead of inverting the
matrix, particularly in three dimensions (see later).

4.3. Coupled smoother— linewise (CLGS)

The cellwise implementation described above is known to have poor convergence character-
istic when grids are stretched or the flow is largely unidirectional, and an alternative is to
update variables for an entire line of continuity control volumes. The CLGS [18] method does
precisely this. In three dimensions there is clearly the choice of which direction to choose for
the collective update. In two dimensions [11], sweeping vertically (the z-direction) was found
to be better than horizontally (x-direction), while in this work, in three dimensions sweeping
laterally (the y-direction) has been found better than either of the others. The formulation in
[11] was given in terms of vertical sweeping, and the necessary extensions for the three-dimen-
sional case are given here in terms of the same direction. The starting point is to write the
variables in groups of six as indicated in Figure 3, i.e.

[. . . , wijk−1/2, ui−1/2jk, ui+1/2jk, 6ij−1/2k, 6ij+1/2k, pijk, . . . ]T.

Vertically adjacent pressures are now linked, giving a minor modification to the vertical
momentum equation, while the form of the other two momentum equation remains un-
changed. This gives rise to a matrix system with the following block structure:
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Figure 3. Grouping of flow variables associated with a vertical line of continuity control volumes for line sweeping in
the z-direction.
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The structure of this matrix is block-tridiagonal and is solved using a specially written routine.
In terms of flux evaluations, more cell faces can be considered shared than before, and the
work count reduced compared with the cellwise version. Underrelaxation is again achieved by
adding a fraction of the computed changes as described for the cellwise version.

5. MULTIGRID IMPLEMENTATION

The implementation of the multigrid algorithm has been described for the two-dimensional
case in [5,11]. Here the same basic method is used with appropriate extensions for the
three-dimensional problem. The manner of grid coarsening is that continuity control volumes
on a coarse grid are formed from the sum of eight such control volumes on the immediately
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preceding fine grid. Restriction of the velocities to a coarse grid is carried out using the means
of the four nearest fine grid neighbours, while equation residuals are restricted using summa-
tion with appropriate scaling to preserve volume integrals The cycling algorithm was kept the
same for all the smoothing algorithms tested, with W-cycles used to visit the grids in the
hierarchy, with one pre-smoothing and one post-smoothing iteration on each. The number of
iterations used to solve the equations on the coarsest grid ranged between 5 and 15 depending
on the Reynolds number. Prolongation of the solution corrections was implemented using
trilinear interpolation.

6. RESULTS AND DISCUSSION

Converged solutions have been obtained using each of the smoothing methods SIMPLE,
SCGS and CLGS described earlier on three uniform grids containing 16×8×16, 32×16×32
and 64×32×64 cells and for three Reynolds numbers Re=100, 400 and 1000. The features
of the flow are shown in the velocity vectors of Figure 4, where the main vortex is
accompanied by wall vortices of increasing strength as the Reynolds number rises. Rather than
compare line plots of velocity profiles to assess the accuracy of the underlying discretisation,
the author uses the simpler measure given by the extreme velocity values attained in the centre
(symmetry) plane. The three values used are the maximum negative value of the horizontal
velocity on the vertical centre line and the maximum and minimum values of the vertical
velocity on the horizontal centre line. These quantities obtained on the three grids are plotted
in Figure 5 against the square of the grid spacing for the three Reynolds numbers used. For
the two lower Reynolds numbers, the discretistion exhibits clear second-order behaviour,
although less clearly for Re=1000 and further data is required. Plotted for comparison,
however, are the values given for each quantity by Deng et al. [23] for a second-order scheme
on the finest grid, which indicate very close agreement.

The multigrid performances of the SIMPLE and SCGS methods are given in Tables I and
II, while that of the CLGS method is given in Tables III, IV and V, which correspond to
linewise coupling in the x-, y- and z-directions respectively. The tables give the number of
multigrid cycles and the computing time required on a Silicon Graphics Indy Workstation in
double precision arithmetic for the absolute value of the L2 norm of the residual to fall below
10−4, where the definition of the norm of the residual is the usual one:

R=

<% (Ru)2+% (R 6)2+% (Rw)2+% (Rc)2

4×IMAXN g
×JMAXN g

×KMAXN g

=1/2

.

The individual residuals are normalised by the volumes of the control volumes so that the their
dimensions correspond to those of the original partial differential equations. It is seen
immediately that a good degree of grid independence is achieved for all the implementations
in terms of the number of multigrid cycles required to reach the level of convergence specified.
This should lead to an increase in computing time with one level of grid refinement of
approximately eight. In fact the increases are somewhat greater than this in general, due to the
fact that the computing time per cycle per grid point rises with grid refinement, Table VI. This
is not surprising given that as the dimension of the problem increases, the data becomes more
scattered within computer memory and access times are longer.

Comparing the results for SIMPLE (Table I) with those of SCGS (Table II) it is clear that
although SCGS requires fewer cycles, SIMPLE outperforms SCGS in terms of computing time
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at all Reynolds numbers. This is not the case for the two-dimensional problem, where in all
comparisons made [9–11], SCGS outperforms SIMPLE, and this observation thus merits some
discussion. Firstly, it is the case that the convergence rates achieved for the two-dimensional
problem are being achieved in three dimensions. This is confirmed in Figure 6, where the
convergence histories for the computations with both methods at each Reynolds number on

Figure 4. Velocity vectors in the centre plane (y=0.5) and in a spanwise plane (x=0.547) for converged solutions on
the finest grid. Note that for clarity only alternate vectors are shown and that the vector lengths in the spanwise plane

are magnified by 2.5 compared with those in the centre plane. (a) Re=100, (b) Re=400, (c) Re=1000.
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Figure 5. Variation with grid refinement of peak velocity values on the centre plane. (a) Re=100, (b) Re=400,
(c) Re=1000. , �Wmin�; �, �Umin�; �, Wmax; × , Deng et al. [23].

the three-dimensional 64×32×64 grid are compared with corresponding computations on a
two-dimensional 64×64 grid. The reason for the degradation in the performance of SCGS
compared with SIMPLE in extending from two to three dimensions is rather directly related
to the nature of the methods themselves, and the additional work per grid cell required in three
dimensions compared with two as the following discussion makes clear.

The number of momentum flux evaluations required by SCGS to update the variables
associated with one continuity control volume in two dimensions is 16 (or 14 if the flux
through shared faces is evaluated only once), so for a forward sweep followed by a backward

Table I. Number of multigrid cycles and computing times for convergence to
10−4 for SIMPLE

32×16×32 64×32×6416×8×16Grid size

Re
8 (86 s) 8 (797 s)100 8 (10.4 s)

400 9 (896 s)10 (107 s)10 (12.9 s)
12 (1195 s)14 (150 s)13 (16.4 s)1000
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Table II. Number of multigrid cycles and computing times for convergence to
10−4 for SCGS

16×8×16 32×16×32 64×32×64Grid size

Re
5 (15.4 s) 5 (132 s)100 4 (962 s)

400 6 (18.4 s) 6 (158 s) 5 (1205 s)
8 (24.4 s) 8 (211 s) 7 (1685 s)1000

sweep this is 32 (or 28). In three dimensions, this becomes 36 (or 33) for a single sweep, and
72 (or 66) for the two sweeps. Thus, the increase in work per continuity control volume in
terms of flux evaluations from two dimensions to three is approximately 72/32=2.25 (66/28=
2.36). The work required to invert the matrix rises by a factor of 1.5 (from 42 floating point
operations to 62) but this is only a small proportion of the total computational effort. For the
SIMPLE method, on the other hand, the momentum equation coefficients are evaluated once
per sweep assuming that all variables are at the same stage of the computation, and so all cell
faces can be considered shared. In two dimensions, this means two flux evaluations per
continuity control volume for each momentum equation, giving a total of four. In three
dimensions, three flux evaluations per continuity control volume are required for each of the
three momentum equations giving a total of nine. In terms of the flux evaluations, therefore,
the increase in work for SIMPLE is approximately 9/4=2.25, the same as for SCGS.
However, much of the work in the SIMPLE method is the solution of the pressure perturba-
tion equation, which is based on the continuity equation. Since this is a single equation, the
work required to achieve this in three dimensions is only 1.5 times greater than that required
in two dimensions. This leads to the observation that in extending from two to three
dimensions, the work per continuity control volume for the SIMPLE method is likely to
increase by a smaller factor than for the SCGS method.

Compared with SCGS, the CLGS method is somewhat more efficient, however. Since
variables belonging to a whole line of continuity cells are updated together, fewer momentum
flux evaluations are required. In two dimensions, the method only requires three evaluations
per continuity control volume for the component of momentum aligned with the direction of
sweep and five for the other component, giving a total of eight per sweep. Since two sweeps
are performed this is 16, compared with a minimum of 28 for SCGS. The reduction seen in [11]
was not as great as 16/28, partly because CLGS requires the use of array variables, whereas

Table III. Number of multigrid cycles and computing times for convergence to
10−4 for CLGS-X

32×16×3216×8×16Grid size 64×32×64

Re
100 5 (8.8 s) 5 (70 s) 6 (709 s)

9 (1065 s)9 (127 s)7 (12.8 s)400
1000 9 (17.4 s) 12 (171 s) 14 (1661 s)
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Table IV. Number of multigrid cycles and computing times for convergence to
10−4 for CLGS-Y

16×8×16 32×16×32 64×32×64Grid size

Re
5 (10.9 s) 5 (92 s)100 4 (666 s)

400 6 (13.6 s) 6 (111 s) 5 (840 s)
8 (19.0 s) 8 (149 s) 7 (1186 s)1000

SCGS does not. In three dimensions, the method requires five evaluations per continuity
control volume for the component aligned with the sweeping direction, and nine for each of
the other two components. This totals 23 flux evaluations, which doubles to 46 for the two
sweeps, compared with a minimum of 66 for SCGS. Thus, on this crude basis, one might
expect a reduction in computing time per cycle of around 46/66:70% for CLGS over SCGS.

The computing times per gridpoint per multigrid cycle for each of the methods were referred
to above and are given in Table VI. SCGS is clearly the least efficient in these terms, especially
when compared with SIMPLE for the reasons discussed earlier. The corresponding times for
CLGS are also less than for SCGS as anticipated, with the reductions for CLGS-X, CLGS-Y
and CLGS-Z being approximately 49, 69 and 92% respectively on the finest grid. It is perhaps
surprising at first sight that the times for these three implementations of the same algorithm
should be so different—after all, the same arithmetic operations are being performed. The
explanation lies in the manner of data storage described earlier, where data is stored as
single-dimensional vectors, with consecutive elements containing variables that are horizontally
adjacent neighbours in the discretisation. Sweeping in a direction that is aligned with the data
structure in this way is bound to be favourable, meaning that CLGS-X is the most efficient
implementation. Elements in the vector corresponding to laterally adjacent and vertically
adjacent neighbours in the discretisation appear separated by an offset (given by IMAX and
IMAX×JMAX respectively), so CLGS-Y and CLGS-Z will be less efficient, with the larger
offset giving the least efficient method.

Computational efficiency is only one consideration, however, and rate of convergence is
equally important. For completeness, the convergence histories of CLGS-X and CLGS-Z for
the three-dimensional problem are compared with those of the corresponding two-dimensional
problem in Figure 7. Whereas the SIMPLE and SCGS methods reproduced the two-dimen-
sional convergence rates in three dimensions, it is clear that CLGS-X does not perform as well
in three dimensions as in two. CLGS-Z on the other hand appears more robust in three
dimensions and gives similar rates as in the two-dimensional case.

Table V. Number of multigrid cycles and computing times for convergence to
10−4 for CLGS-Z

32×16×3216×8×16Grid size 64×32×64

Re
100 5 (11.9 s) 5 (118 s) 5 (1110 s)

6 (1430 s)8 (190 s)8 (19.7 s)400
1000 12 (29.4 s) 13 (288 s) 12 (2897 s)
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Table VI. Variation in computing time (in ms) per grid point per cycle for
each smoother with grid refinement

SIMPLE SCGS CLGS-X CLGS-Y CLGS-Z

0.63 1.50 0.8616×8×16 1.06 1.16
0.6632×16×32 1.61 0.86 1.12 1.44
0.76 1.84 0.90 1.27 1.6964×32×64

The asymptotic convergence rates of the five implementations are compared in Figure 8 for
computations on the finest grid at the three Reynolds numbers. The SIMPLE method is the
slowest, while SCGS is the fastest. CLGS-Y is the best of the implementations of the line

Figure 6. Convergence rates of smoothers obtained for the three-dimensional cubic cavity compared with those
obtained for the two-dimensional square cavity with the same grid spacing; (a) SIMPLE, (b) SCGS.
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Figure 7. Convergence rates of smoothers obtained for the three-dimensional cubic cavity compared with those
obtained for the two-dimensional square cavity with the same grid spacing; (a) CLGS-X, (b) CLGS-Z. Note that

CLGS-Y has no counterpart in two dimensions.

solver and reproduces the convergence rate of SCGS for low Reynolds numbers. This is of
interest for the direction of sweep of CLGS-Y is perpendicular to the direction of the bulk of
the flow and concurs with the observation in [11], where for unidirectional flows in two
dimensions, the best strategy was to sweep in a direction perpendicular to that of the flow. The
convergence rates of both CLGS-X and CLGS-Z deteriorate in comparison, particularly for
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the higher Reynolds number. Thus, given its relatively high computational efficiency compared
with the other coupled algorithms and its good convergence characteristics over the range of
Reynolds numbers tested, CLGS-Y is clearly the best implementation of any of the coupled
algorithms described. Compared with SIMPLE, however, although the convergence rate is
much better, the greater computational efficiency of the decoupled method means that in fact
neither is consistently better than the other for all Reynolds numbers and grids (compare
Tables I and IV). As noted in [11] however, a change to the structure of the data storage would

Figure 8. Comparison of the convergence rates obtained with each smoother for the cubic cavity; (a) Re=100, (b)
Re=400, (c) Re=1000.
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Figure 8 (Continued)

provide CLGS-Y with a clear advantage. If the single-dimensional arrays stored variables in
rows in the y-direction so that consecutive elements contained spanwise neighbours, the
direction of sweep would align with the order in which data is stored. The figures in Table VI
imply that computing times for CLGS-Y would then reduce by up to 30%.

7. CONCLUSIONS

Results have been presented in this paper for the decoupled smoother SIMPLE, the cellwise
coupled smoother SCGS and the linewise coupled smoother CLGS when used in a multigrid
algorithm to solve the discrete Navier–Stokes equations in one half of a symmetric cubic
cavity. In conclusion, several remarks can be made. Firstly, with the exception of CLGS-X, the
convergence characteristics of each of the methods obtained for the two-dimensional driven
cavity problem are generally reproduced when applied to the three-dimensional problem. Since
the work on a coarse grid is only an eighth of that on a fine grid (in two dimensions it is one
quarter), this should lead to greater speed-up ratios for the three-dimensional problem when
compared with the corresponding two-dimensional problem with the same grid spacing.

Secondly, the performance of SIMPLE has been compared with that of SCGS. Although the
convergence rate of SCGS is easily superior to that of SIMPLE, the relative inefficiency of
SCGS when implemented in three dimensions means that it usually requires at least 50% more
computing time to reach a specified convergence level than does SIMPLE.

Thirdly, the relative performance of the line solver CLGS when implemented in the three
co-ordinate directions has been investigated. As anticipated from a crude estimate of the
number of flux evaluations required, CLGS was found to be more efficient than SCGS. The
manner of data storage has an impact on the efficiency of the algorithm, with the most
efficient implementation being CLGS-X when the sweeping direction is aligned with the order
in which variables are stored, and the least being CLGS-Z, when the offset between variables
is largest. In terms of the convergence characteristics, CLGS-Y reproduces most closely the
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good convergence rates of SCGS, while those of CLGS-X and CLGS-Z deteriorate, particu-
larly for high Reynolds numbers. Given its greater efficiency over SCGS and its good
convergence rates, CLGS-Y is found to be the optimal coupled method. The optimal
performance of sweeping in a direction perpendicular the bulk of the flow concurs with
previous observations for two-dimensional flows [11]. Compared with SIMPLE, however, the
gains associated with CLGS-Y are only marginal, and the computing times for a given level of
convergence appear to be very similar on all three grids and at all three Reynolds numbers
tried. However, it is anticipated that a change in the manner of the data storage would reduce
the computing times of CLGS-Y by up to 30%, thus giving the method a clear advantage over
SIMPLE for these flows.

It was found that for two-dimensional problems [11], the good convergence rates of the
coupled methods evident for idealised test problems, such as the driven cavity, were not
reproduced for flows over obstacles where grids are non-uniform, the flow is largely unidirec-
tional and more complicated boundary conditions are imposed. For these flows, the decoupled
method was found to be superior to the coupled methods, but whether the same is true in three
dimensions remains to be seen
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